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We study experimentally nodal domains of wave functions �electric field distributions� lying in the regime of
Shnirelman ergodicity in the chaotic microwave half-circular ray-splitting rough billiard. For this aim the wave
functions �N of the billiard were measured up to the level number N=415. We show that in the regime of
Shnirelman ergodicity �N�208� wave functions of the chaotic half-circular microwave ray-splitting rough
billiard are extended over the whole energy surface and the amplitude distributions are Gaussian. For such
ergodic wave functions, the dependence of the number of nodal domains �N on the level number N was found.
We show that in the limit N→� the least squares fit of the experimental data yields �N /N�0.063±0.023,
which is close to the theoretical prediction �N /N�0.062. We demonstrate that for higher level numbers N
�215–415 the variance of the mean number of nodal domains �N

2 /N is scattered around the theoretical limit
�N

2 /N�0.05. We also found that the distribution of the areas s of nodal domains has power behavior ns

�s−�, where the scaling exponent is equal to �=2.14±0.12. This result is in good agreement with the prediction
of percolation theory.
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In recent theoretical papers by Bogomolny and Schmit �1�
and Blum et al. �2� the distributions of the nodal domains of
real wave functions ��x ,y� in two-dimensional �2D� quan-
tum systems �billiards� have been considered. Nodal do-
mains are regions where a wave function ��x ,y� has a defi-
nite sign. The condition ��x ,y�=0 determines a set of nodal
lines which separate nodal domains. Bogomolny and Schmit
�1� have proposed a very fruitful, percolationlike model for
description of properties of the nodal domains of generic
chaotic system. Using this model they have shown that the
distribution of nodal domains of quantum wave functions of
chaotic systems is universal. Blum et al. �2� have shown that
the systems with integrable and chaotic underlying classical
dynamics can be distinguished by different distributions of
the number of nodal domains. In this way they provided a
criterion of quantum chaos, which is not directly related to
spectral statistics.

Theoretical findings of Bogomolny and Schmit �1� and
Blum et al. �2� have been recently tested in the experiment
with the microwave half-circular rough billiard by Savytskyy
et al. �3�.

In this paper we present the first experimental investiga-
tion of nodal domains of wave functions of the chaotic mi-
crowave ray-splitting rough billiard. Ray-splitting systems
are a class of chaotic systems in which the underlying clas-
sical mechanics is non-Newtonian and nondeterministic
�4–6�. In ray-splitting systems a wave which encounters a
discontinuity in the propagation medium splits into two or
more rays traveling usually away from the discontinuity. Ray
splitting occurs in many fields of physics, whenever the
wave length is large in comparison with the range over
which the potential changes. Ideal model systems for the
investigation of ray-splitting phenomena are ray-splitting bil-
liards �6,7� and microwave cavities with dielectric inserts
�5,8–10�. Measurements of wave functions of ray-splitting
systems are very demanding because in principle they re-
quire the direct access to all parts of the system �11� includ-
ing those filled with ray-splitting media, such as dielectric in

the case of ray-splitting microwave billiards. This is one of
the main reasons for which only low wave functions �N
�100� of ray-splitting billiards have been measured �11�. In
this paper we use a method of the reconstruction of wave
functions introduced by Savytskyy and Sirko �12� which in
the case of the half-circular microwave ray-splitting rough
billiard allowed for the reconstruction of wave functions
with the level numbers N�415.

In the experiment we used the thin �height h=8 mm� alu-
minium cavity in the shape of a rough half-circle �Fig. 1�
which consisted of a half-circular Teflon insert of radius Rd
=8.465 cm. The insert had the same height as the rough cav-
ity. The microwave cavity simulates the rough ray-splitting
quantum billiard due to the equivalence between the
Schrödinger equation and the Helmholtz equation �6�. This
equivalence remains valid for frequencies less than the cutoff
frequency 	c=c /2
h�13.1 GHz, where c is the speed of

FIG. 1. Sketch of the chaotic half-circular microwave ray-
splitting rough billiard which consists a half-circular Teflon insert of
radius Rd=8.465 cm. Dimensions are given in cm. The cavity side-
walls are marked by 1 and 2 �see text�. Squared wave functions
��N�Rc ,���2 were evaluated on a half-circle of fixed radius Rc

=19.25 cm. The billiard’s rough boundary is marked by �.
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light and 
=1.425 is the index of refraction of the Teflon
insert.

The cavity sidewalls were made of two segments. The
rough segment 1 is described by the radius function R���
=R0+�m=2

M am sin�m�+
m�, where the mean radius R0

=20 cm, M =20, am and 
m are uniformly distributed on
�0.084,0.091� cm and �0,2��, respectively, and 0����. It
is important to note that we used a rough half-circular cavity
instead of a rough circular cavity because in this way we
avoided nearly degenerate low-level eigenvalues �13,14�.
Additionally, a half-circular geometry of the cavity was nec-
essary for the accurate measurements of the electric field
distributions inside the billiard.

According to Ref. �15� the roughness of a billiard may be
characterized by the function k���= �dR /d�� /R0. The rough-

ness parameter k̃, defined as the angle average of the function

k���, was for our billiard k̃= ��k2���	��1/2�0.2. In such a bil-
liard, the dynamics is diffusive in orbital momentum due to
collisions with the rough boundary because the roughness

parameter k̃ is much larger than the chaos border parameter

kc=M−5/2=0.00056 �15�. The roughness parameter k̃ deter-
mines also other properties of the billiard �16�. The eigen-

states are localized for the level number N�Ne=1/128k̃4

=5. The border of Breit-Wigner regime is given by NW

=M2 /48k̃2�208. It means that between Ne�N�NW Wigner
ergodicity �16� ought to be observed and for N�NW Shnire-
lman ergodicity should emerge. In the regime of Shnirelman
ergodicity, wave functions have to be uniformly spread out in
the billiard �17�. In this paper we focus our attention on
Shnirelman ergodicity regime.

It is worth noting that rough billiards and related systems
are of considerable interest elsewhere, e.g., in the context of
microdisc lasers �18,19�, light scattering in optical fibers
�20�, ballistic electron transport in microstructures �21�, dy-
namic localization �22�, and localization in discontinuous
quantum systems �23�.

In order to measure the wave functions �electric field dis-
tributions inside the microwave billiard�, which are indis-
pensable in investigation of nodal domains, we used a very
effective method described in Ref. �12�. It is based on the
perturbation technique and construction of the “trial func-
tions.”

Following Ref. �12� we will show that the wave functions
�N�r ,�� �electric field distribution EN�r ,�� inside the cavity�
of the billiard can be determined from the form of electric
field EN�Rc ,�� evaluated on a half-circle of fixed radius Rc

�see Fig. 1�.
The first step in evaluation of EN�Rc ,�� is measurement of

�EN�Rc ,���2. For this purpose the perturbation technique de-
veloped in Ref. �24� and used successfully in Refs. �24–27�
was applied. In this method a small perturber is introduced
inside the cavity to alter its resonant frequency according to

	 − 	N = 	N�aBN
2 − bEN

2 � , �1�

where 	N is the Nth resonant frequency of the unperturbed
cavity, a and b are geometrical factors. Equation �1� can be
used to evaluate EN

2 only when the term containing magnetic

field BN is sufficiently small. In order to minimize the influ-
ence of BN on the frequency shift 	−	N a small piece of a
metallic pin �3 mm in length and 0.25 mm in diameter� was
used as a perturber. The perturber was attached to the mi-
crofilament line hidden in the groove �0.4 mm wide, 1 mm
deep� made in the cavity’s bottom wall along the half-circle
Rc and moved by the stepper motor. Application of such a
small pin perturber reduced the largest positive frequency
shifts to the uncertainty of frequency shift measurements
�15 kHz�. It was verified that the presence of the narrow
groove in the bottom wall of the cavity caused only very
small changes �	N of the eigenfrequencies 	N of the cavity
��	N� /	N�10−4. Therefore, its influence into the structure of
the cavity’s wave functions was also negligible. A big advan-
tage of using the perturber, which was attached to the line,
was connected with the fact that the perturber was always
vertically positioned, which is crucial in the measurements of
the square of electric field EN. The influence of the thermal
expansion of the Teflon insert and the aluminium cavity into
its resonant frequencies was eliminated by stabilization of
the temperature of the cavity with the accuracy of 0.05°.

The regime of Shnirelman ergodicity for the experimental
rough billiard is defined for N�208. Using a field perturba-
tion technique we measured squared wave functions
��N�Rc ,���2 for 30 modes within the region 215�N�415.
The range of corresponding eigenfrequencies was from 	215
�9.42 GHz to 	415�12.98 GHz. The measurements were
performed at 0.36 mm steps along a half-circle with fixed
radius Rc=19.25 cm. This step was small enough to reveal in

FIG. 2. �a� Squared wave function ��415�Rc ,���2 �in arbitrary
units� measured on a half-circle with radius Rc=19.25 cm �	415

�12.98 GHz�. �b� The “trial wave function” �415�Rc ,�� �in arbi-
trary units� with the correctly assigned signs, which was used in the
reconstruction of the wave function �415�r ,�� of the billiard �see
Fig. 3�.
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details the space structure of high-lying levels. In Fig. 2�a�
we show the example of the squared wave function
��N�Rc ,���2 evaluated for the level number N=415. The per-
turbation method used in our measurements allows us to ex-
tract information about the wave function amplitude
��N�Rc ,��� at any given point of the cavity but it doesn’t
allow us to determine the sign of �N�Rc ,�� �29�. However,
the determination of the sign of the wave function �N�Rc ,��
is crucial in the procedure of the reconstruction of the full
wave function �N�r ,�� of the billiard. References �3,12�
suggest the following sign-assignment strategy. First one
should identify all close to zero minima of ��N�Rc ,���. Then
the sign “minus” is arbitrarily assigned to the region between
the first and the second minimum, “plus” to the region be-
tween the second minimum and the third one, and so on. In

this way the “trial wave function” �N�Rc ,�� is constructed.
If the assignment of the signs is correct, the wave function
�N�r ,�� should be reconstructed inside the billiard with the
boundary condition �N�r� ,���=0.

The wave function of a rough ray-splitting half-circular
billiard outside of the half-circular Teflon insert �r�Rd� may
be expanded in terms of Hankel functions

�N
out�r,�� = �

s=1

L

as�s�kNr�sin�s�� , �2�

where �s�x�=Re
Hs
�2��x�+Sss�kNRd�Hs

�1��x�� and kN

=2�	N /c. Hs
�1��x� and Hs

�2��x� are Hankel functions of the
first and the second kind, respectively. The matrix Sss��kNRd�
is defined as follows �30�:

Sss��kNRd� = −
Hs

�2���kNRd� − 
�Js��
kNRd�/Js�
kNRd��Hs
�2��kNRd�

Hs
�1���kNRd� − 
�Js��
kNRd�/Js�
kNRd��Hs

�1��kNRd�
�ss�, �3�

where the derivatives of Hankel and Bessel functions are
marked by primes. In Eq. �2� the number of basis functions is
limited to L=kNrmax+3, where rmax=20.7 cm is the maxi-
mum radius of the cavity. lN

max=kNrmax is a semiclassical es-
timate for the maximum possible angular momentum for a
given kN. The functions with angular momentum s� lN

max de-
scribe evanescent waves. We checked that the basis of L
wave functions was large enough to properly reconstruct bil-
liard’s wave functions. The coefficients as may be deter-
mined from the trial wave functions �N�Rc ,�� via

as = ��

2
�s�kNRc�
−1�

0

�

�N�Rc,��sin�s��d� . �4�

The wave functions of the billiard inside the Teflon insert
�r�Rd� may be expanded in terms of circular waves

�N
in�r,�� = �

s=1

L�

as�Js�
kNr�sin�s�� . �5�

In Eq. �5� the number of basis functions was limited to
L�=
kNRd. The coefficients as given by Eq. �4� and the con-
tinuity condition fulfilled at the border of the dielectric insert
�N

out�Rd ,��=�N
in�Rd ,�� may be used to evaluate the coeffi-

cients as� in Eq. �5� allowing in this way the reconstruction of
the full wave function �N�r ,�� of the billiard.

In the evaluation of the coefficients as� in Eq. �5� an im-
portant role plays the value of the refraction index 
 of the
Teflon insert. We measured the refraction index 

=1.425±0.002 of Teflon by measuring the set of resonant
frequencies of a microwave circular cavity of radius RT
=3.25 cm entirely filled by it.

Using the method of the trial wave function, we were able
to reconstruct 30 experimental wave functions of the rough
half-circular billiard with the level number N between 215
and 415. The wave functions were reconstructed on points of
a square grid of side 4.2�10−4 m. As the quantitative mea-
sure of the sign-assignment quality we chose the integral
�����N�r ,���2dl calculated along the billiard’s rough bound-
ary �, where � is length of �. In Fig. 2�b� we show the trial
wave function �415�Rc ,�� with the correctly assigned signs,
which was used in the reconstruction of the wave function
�415�r ,�� of the billiard �see Fig. 3�. It is worth noting that

FIG. 3. The reconstructed wave function �415�r ,�� of the cha-
otic half-circular microwave rough billiard. The amplitudes have
been converted into a gray scale with white corresponding to large
positive and black corresponding to large negative values, respec-
tively. Dimensions of the billiard are given in cm. The position of
the half-circular Teflon insert of radius Rd=8.465 cm is marked
with a solid line.
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inside the Teflon insert the size of nodal domains are much
smaller than outside of it. The remaining wave functions
from the range N=215–415 were not reconstructed because
of the accidental near-degeneration of the neighboring states
or due to the problems with the measurements of
��N�Rc ,���2 along a half-circle coinciding for its significant
part with one or several of the nodal lines of �N�r ,��. The
problem of the near-degenerated states is important because
in the presence of the perturber the resonances are shifted,
which may cause the initially nonoverlapping states to be-
come near-degenerated at certain positions of the perturber.
Such a situation prevents us from the reconstruction of the
wave functions. The problems mentioned are getting much

more severe for N�200. Furthermore, the computation time
tr required for reconstruction of the trial wave function scales
like tr�2nz−2, where nz is the number of identified zeros in
the measured function ��N�Rc ,���.

The structure of the energy surface �15� of the billiard’s
wave functions plays an important role in the identification
of their ergodicity. To check it we extracted wave function
amplitudes Cnl

�N�= �n , l �N	 in the basis n , l of a half-circular
ray-splitting billiard �desymmetrized annular ray-splitting
billiard� �28� with radius rmax and a half-circular Teflon insert
of radius Rd. The normalized eigenfunctions of the half-
circular ray-splitting billiard are given by

�nl�r,�� = �AlnJl�
�lnr�sin�l�� , 0 � r � Rd,

Aln�ClnJl��lnr� + DlnYl��lnr��sin�l�� , Rd � r � rmax,
� �6�

where Aln= 
�� /2���0
RdrJl�
�lnr�2dr+�Rd

rmaxr�ClnJl��lnr�
+DlnYl��lnr��2dr��−1/2. Jl��lnr� and Yl��lnr� are Bessel and
Neumann functions, respectively. The main quantum number
n=1,2 ,3 , . . . enumerates the zeros yln=�lnrmax of the radial
function

ClnJl�yln� + DlnYl�yln� = 0, �7�

and l=1,2 ,3 , . . . is the angular momentum quantum number.
The coefficients Cln and Dln can be determined from the
continuity conditions of the wave function �nl�r ,�� and its
derivative �nl� �r ,�� on Teflon’s boundary Rd

� Jl�
�lnRd� = ClnJl��lnRd� + DlnYl��lnRd� ,


Jl��
�lnRd� = ClnJl���lnRd� + DlnYl���lnRd� .
� �8�

The moduli of amplitudes �Cnl
�N�� and their projections into the

energy surface for the representative experimental wave
functions N=215 and N=415 are shown in Fig. 4. As ex-
pected, in the regime of Shnirelman ergodicity the wave
functions are extended over the whole energy surface �13�.
The full lines on the projection planes in Fig. 4�a� and Fig.
4�b� mark the energy surface of a half-circular annular ray-
splitting billiard H�n , l��EN=kN

2 estimated from the formula
�H�n , l�−EN� /EN�0.12. The peaks �Cnl

�N�� are spread almost
perfectly along the lines marking the energy surface.

Ergodic behavior of the measured wave functions can be
also tested by evaluation of the amplitude distribution P��N�
�31,32�. For irregular, chaotic states the probability of finding
the value �N at any point inside the billiard should be dis-

tributed as a Gaussian, P��N��e−��N
2
. In Fig. 5�a� we show

the amplitude distribution P��NA1/2� for the wave function
N=215 while in Fig. 5�b� the distribution P��NA1/2� for the
wave function N=415 is presented. The distributions were
constructed as normalized to unity histograms with the bin
equal to 0.2. The width of the amplitude distributions P��N�
was rescaled to unity by multiplying normalized to unity

wave functions by the factor A1/2, where A denotes the bil-
liard’s area �see formula �23� in Ref. �31��. For all measured
wave functions lying in the regime of Shnirelman ergodicity,
the distributions of P��NA1/2� were in good agreement with
the standard normalized Gaussian prediction P0��A1/2�
= �1/�2��e−�2A/2.

The number of nodal domains �N vs the level number N

FIG. 4. Structure of the energy surface in the regime of Shnire-
lman ergodicity. Here we show the moduli of amplitudes �Cnl

�N�� for
the wave functions �a� N=215, �b� N=415. The wave functions are
delocalized in the n , l basis. Full lines show the energy surface �see
text�.
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in the chaotic microwave ray-splitting rough billiard is plot-
ted in Fig. 6. The full line in Fig. 6 shows the least squares fit
�N=a1N+b1

�N of the experimental data, where a1
=0.063±0.023, b1=0.77±0.4. The coefficient a1
=0.063±0.023 coincides with the prediction of the percola-
tion model of Bogomolny and Schmit �1� �N /N�0.062
within the error limits. The errors of the coefficients a1 and
b1 are relatively high because the number of nodal domains
fluctuates significantly in the function of the level number N,
what was also demonstrated in �2� �see Fig. 5�. It is worth
mention that in Ref. �3� the coefficient a1 was estimated in
the experiment with the microwave rough billiard without
the ray-splitting Teflon insert. Its value a1=0.058±0.006 was
also close to the theoretical prediction. The second term in
the least squares fit corresponds to a contribution of bound-
ary domains, i.e., domains that include the billiard boundary.
Numerical calculations of Blum et al. �2� performed for the
Sinai and stadium billiards showed that the number of
boundary domains scales as the number of the boundary in-
tersections, that is, as �N. Present results together with the
results of Ref. �3� clearly suggest that in the rough billiards
�with and without ray splitting�, at low level number N, the
boundary domains also significantly influence the scaling of
the number of nodal domains �N, leading to the departure
from the predicted scaling �N�N.

Measured wave functions of the ray-splitting billiard may
be also used for the calculations of the variance �N

2 of the
mean number of nodal domains. It was predicted in Ref. �1�
that for chaotic wave functions the variance of the mean
number of nodal domains should converge to the theoretical
limit �N

2 �0.05N. In Fig. 7 the variance of the mean number
of nodal domains divided by the level number �N

2 /N is
shown for the microwave ray-splitting rough billiard. The
variance �N

2 = �1/Nw−1��i=1
Nw ��Ni

− ��N	�2 was calculated in
the window of Nw=5 consecutive eigenstates measured be-
tween 215�N�415, where the mean number of nodal do-
mains was defined as ��N	= �1/Nw��i=1

Nw �Ni
. For level num-

bers N�300 the variance �N
2 /N is above the predicted

theoretical limit; however, for 300�N�415 it is slightly
below it. A similar erratic behavior of �N

2 /N was also ob-
served in Ref. �1�.

FIG. 5. �a� The amplitude distribution P��NA1/2� for the wave
function N=215. �b� The distribution P��NA1/2� for the wave func-
tion N=415. The amplitude distributions were constructed as histo-
grams with bin equal to 0.2. The width of the distribution P��� was
rescaled to unity by multiplying normalized to unity wave function
by the factor A1/2, where A denotes the billiard’s area. Full lines
show standard normalized Gaussian prediction P0��A1/2�
= �1/�2��e−�2A/2.

FIG. 6. The number of nodal domains �N �full circles� for the
chaotic half-circular microwave ray-splitting rough billiard. Full
line shows the least squares fit �N=a1N+b1

�N to the experimental
data �see text�, where a1=0.063±0.023, b1=0.77±0.40. The predic-
tion of the theory of Bogomolny and Schmit �1� a1=0.062.

FIG. 7. The variance of the mean number of nodal domains
divided by the level number �N

2 /N for the chaotic half-circular mi-
crowave ray-splitting rough billiard. Full line shows predicted by
the theory limit �N

2 /N�0.05, Bogomolny and Schmit �1�.
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The percolation model �1� allows for applying the results
of percolation theory to the description of nodal domains of
chaotic billiards. The percolation theory predicts that the dis-
tribution of the areas s of nodal clusters should obey the
scaling behavior ns�s−�. The scaling exponent �33� is found
to be �=187/91. In Fig. 8 we present in logarithmic scales
nodal domain areas distribution �ns /n	 vs �s /smin	 obtained
for the microwave ray-splitting rough billiard. The distribu-
tion �ns /n	 was constructed as normalized to unity histogram
with the bin equal to 1. The areas s of nodal domains were
calculated by summing up the areas of the nearest neighbor-
ing grid sites having the same sign of the wave function. In
Fig. 8 the vertical axis �ns /n	= �1/NT��i=1

NT ns
�N� /n�N� repre-

sents the number of nodal domains ns
�N� of size s divided by

the total number of domains n�N� averaged over NT=30 wave
functions measured in the range 215�N�415. In these cal-

culations we took into account only the nodal domains which
entirely lay outside or inside the Teflon insert for which per-
colation theory �33� should be applicable. The horizontal
axis in Fig. 8 is expressed in the units of the smallest pos-
sible area smin

�N� �1�, �s /smin	= �1/NT��i=1
NT s /smin

�N� , where smin
�N�

=��j01/
kN�2 and j01�2.4048 is the first zero of the Bessel
function J0�j01�=0. For nodal domains lying inside the Te-
flon insert, the refraction index was according to our mea-
surements 
=1.425 while outside of the insert we assumed

=1. The full line in Fig. 8 shows the prediction of perco-
lation theory log10��ns /n	�=− 187

91 log10��s /smin	�. In a broad
range of log10��s /smin	�, approximately from 0.2 to 1.4,
which is marked by the two vertical lines the experimental
results follow closely the theoretical prediction. The least
squares fit log10��ns /n	�=a2−�log10��s /smin	� of the experi-
mental results lying within the vertical lines gives the scaling
exponent �=2.14±0.12 and a2=−0.06±0.12, which is in
good agreement with the predicted �=187/91�2.05. The
result of the fit is shown in Fig. 8 by the dashed line.

In summary, we measured high-lying wave functions of
the chaotic microwave ray-splitting rough billiard. We
showed that in the limit N→� the least squares fit of the
experimental data reveals the asymptotic number of nodal
domains �N /N�0.063±0.023 that is close to the theoretical
prediction �N /N�0.062 �1�. We demonstrate that for higher
level numbers N�215–415 the variance of the mean num-
ber of nodal domains �2 /N is scattered around the theoretical
limit �2 /N�0.05. Following the results of percolationlike
model proposed by Ref. �1� we confirmed that the distribu-
tion of the areas s of nodal domains has power behavior ns
�s−�, where scaling exponent is equal to �=2.14±0.12. This
result is in a good agreement with the prediction of percola-
tion theory �33�, which predicts �=187/91�2.05. The ex-
perimental results presented in this paper strongly suggest
that many properties of nodal domains in chaotic ray-
splitting billiards are the same, like in conventional chaotic
billiards without ray-splitting.
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